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Abstract—This paper addresses real-time weapon classification weapon classification is dependent on the localization. To

by analysis of asynchronous acoustic data, collected from ioro-
phones on a sensor network. The weapon classification algtirm
consists of two parts: (i) feature extraction from time-seies
data using Symbolic Dynamic Filtering (SDF), and (ii) patten
classification based on the extracted features using Langge
Measure (LM) and Support Vector Machine (SVM). The pro-
posed algorithm has been tested on field data, generated byifig
of two types of rifles. The results of analysis demonstrate gh
accuracy and fast execution of the pattern classification gbrithm
with low memory requirements. Potential applications incude
simultaneous shooter localization and weapon classificath with
soldier-wearable networked sensors.

1. INTRODUCTION

alleviate the requirement of time synchronization, Damatl

al. [7] developed a sniper localization method for a network
of sensors, which relies only on thiene difference of arrival
(TDOA) between the muzzle blast and shock wave from
multiple single sensor nodes, relaxing the need for precise
time synchronization across the network.

The goal of the research work explored in this paper is to
formulate a real-time weapon classification algorithm bHase
on asynchronous time series data collected from micropghone
on a sensor network. The major contribution of this paper
is formulation of a weapon classification algorithm that is
capable of real-time feature extraction and pattern diaasi

Sniper attacks have become one of the major sourcestiBf‘ directly from the time series of asynchrorlous a(;oustic
casualty in asymmetric warfare, especially in urban emiroSignals, collected from networked sensors. This algorittm
ments. A counter-sniper system that assists identificaion independent of sniper location and thus is expected to be mor
the shooter’s location and weapon class information woufgliable under adverse conditions in battle fields thantiegs
significantly reduce the potential peril of both soldiersianVeapon classification systems [6].
civilian population. Counter-sniper systems make use of se
eral different physical phenomena that are related to weap@. REVIEW OF UNDERLYING MATHEMATICAL CONCEPTS

data (e.g., acoustic, visual, or electromagnetic signalsgpite

The weapon classification algorithm is built upon the

of the wide range of possible measurement devices, acous§ifowing major concepts: (i) Symbolic Dynamic Filtering
signals (e.g., muzzle blast, shockwave, and surface vib(&DF) [8][9] for feature extraction; and (ii) Language Maes
tion [1]) apparently provide the most convenient and adeurg| M) [10][11] and Support Vector Machine (SVM) [12][13]
way to identify sniper shots. Hence, a majority of existingor pattern classification. While the theories of SDF, LMdan
counter-sniper systems use acoustic signals as the primgiyMm are reported in details in existing literature, thistget
information source [2]. In recent years, several commercigriefly presents the underlying concepts that have significa
sniper localization systems have been developed [3] [4] [Fklevance to this paper.

which have not taken weapon classification into considera-

tion. To this end, Volgyeskt al. [6] developed a soldier-
wearable sensor network system for both shooter locadizati
and weapon classification. It estimates the trajectorygean

A. Symbolic Dynamic Filtering (SDF) for Feature extraction
Figure 1 pictorially elucidates the concepts of partitiani

caliber, and weapon type using data from a single sensbffinite region of the phase space of the dynamical system
or fusion of multiple time-synchronized sensors, where tHder consideration and a mapping from the partitionedespac

into the symbol alphabet, where the symbols are indicated by
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the symbol sequence into a probabilistic finite-state aatom
(PFSA) and generation of the state probability vectors at
the current and the reference conditions. The states of the
PFSA and the associated histograms in Fig. 1 are indicated by
numerics (i.e., 0, 1, 2 and 3). Feature extraction from ingin
data is comprised of the following steps.
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> Symbol Sequence data set; € {0,1,...,1 — 1}. Sincew;ﬂk > 0 is the transition
probability from statej to statek, II" is a stochastic matrix,
e, > Ty =1Vj € {1,2,...,r}.

B. Pattern Classification

1 (t‘izi;e State Mahﬁh:jn?) A threshold-based binary classifier is constructed in terms
° h° o of a signed scalar measure [10][11] of the language gerterate

by the PFSAII. The classification logic is as follows:

0.60 Reference Current
o°|  Distribution Distribution Cy ifv<0
- Class = , (1)
) Cy :ifv>0
0007 1 2 3 0070 1 2 3 ) . o
State Probability Histogram State Probability Histogram where v is the language measure obtained by assigning a
Fig. 1. Concept of Symbolic Dynamic Filtering (SDF) weight to each state of the PFIA.

. i . i _ _ Definition 2.1: The characteristic vectoy assigns a signed
1) Collection of Time Series Daté&Sensor time series data,real weight to each of the states of the PFSA, where larger

generated from_a.physwal system or its dynamical model, _‘Wéights are assigned to relatively more desirable states. T
collected as training or test sets over the range of opetatl?l » 1) characteristic vector is defined as:

A compact (i.e., closed and bounded) regidne R" (i.e.,
the n-dimensional real space), wheree N (i.e., the set of X =1[x1 x2 - x| (2)

positive integers), within which the quasi-stationarydiseries  pafinition 2.2: Measure of the language generated by a

is circumscribed, is identified. Let the space of time sell##8  pEgA in terms of its characteristic vectgris defined as:
sets be represented &5 where the number of data points

in each time series is sufficiently large for convergence of  o(6) =6 [ — (1 — O)II) 'x” where 6 € (0,1) (3)

statistical properties within a specified threshold [9].efh . A _ .
; ;G : ' Proposition 2.1: The measure (0) < limg_, g+ (0) exists
=yt s, Y d t t for the dat t

y' = {y}, 5, ...} € enotes a time series for the data set '~ ° - 2815(0) o < || oc.

1€{0,1,...,1— 1}, Whgrel is the number of time series data Proof: Given in [11] -
sets under consu_j.era.tmn.. , Proposition 2.2:Given a primitive (i.e., irreducible and
. 2) Sp_ace Part|t|_o_n|ng:T|me series data are encodc_ad b%lcyclic) state transition matridl, the measure in Eqg. (3)
introducing a partitionB = {Bo, ..., B,—1)} that consists reduces ta7(0) = v 1 in the limit, where1 2 [1 1 ... 1]7.
of m mutually exclusive (ie..B; N B, = 0 Vj # k), Then, the scalar measureis denoted as [11]:

and exhaustive (i.e.u?zngj = Q) cells. Let each cell be
labeled by symbolsy; € ¥ where ¥ = {og,...,0m—1} v= px’ (4)
is called thealphabet This process of coarse graining can . .
be executed by appropriate partitioning (e.g., uniform (thigi F’ih:t i[glj[ﬁé’ .(.;ljgr;]-r:zrrt:aeliile d>; Qﬁsgteenr\)/rggi?g{
maximum entropy [14]) of the data set. Then, the data pom::{grres onding to its unique unitv ei envalueg[15]

of the reference time serigg’, which visit the cell B; are PrF())of' Gi?/en i [11]q y €9 ' -
assigned the corresponding symbobas’j = 0,1,...,m — 1. : :

This step enables transformation of the reference timeseri The scalar measure is of the form

y’ to a symbol sequence’= {s?,s9,...}, where eachs! r r—1
€ X. To alleviate the difficulties associated with noisy time v = px! = ZPz‘Xi - sz'xz' + peXr
series, symbolization is carried out by Hilbert transfdased i1

1=1
Analytical Signal Space Partitioning (ASSP) [14], whiclais r—1 r—1
essential ingredient of SDF analysis in the proposed weapon = ZpiXi + (1 - Zm) Xr
classification algorithm. Symbol sequencgs--- ,s~! are i=1 i=1
generated from the respective time serigs; - - , y'~!, using r-1 r—1
the same partitioning for generation of the symbol sequence = sz' (Xi = xr) +Xr = Zpiai +b (5)
i=1 i=1

s from the reference time serigs$.

3) Construction of Probabilistic Finite State Automatawherea; = (x; — x,) andb = x,. Therefore, the scalar
(PFSA): Probabilistic finite state automata (PFSA) are commeasure is an affine transformation of tHe—1) independent
structed [8] with a chosen depth and the corresponding state probabilities, where theth state probability may be
(r x r) state transition matriceH’ = [w;.k] are generated by expressed in the forrh— Z;‘;ll p;. Further, the equi-measure
running the symbol sequences through the PFSA structure; surfaces in space of probability vectors are hyper-plages a
pair of subscriptg, k € {1,2,...,r} denotes a state transitiondescribed by Eq, (5). The classifier construction involves
from j to k and the superscript denotes thei” training computation of the values of;, i = 1,...,r — 1 and b,
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Fig. 2. Flow chart of the proposed methodology X /
that in turn may be used to evaluate the characteristic vecto Z T er s
X = [x1 ... xr]- The classifier follows the form of Eq. (1). '
The support vector machine (SVM) [13][12] estimatgs 0 -60
and simultaneously maximizes the separation margin betwee _ o . o
the two classes. In the Iinearly separable case, the bingl . 3. Adata.c-olle-ctlon scenario with 8 microphones andfl? tocat-lons
SVM classifier selects a hyperplane to separate the twoedaseSed for partitioning; these data sets are not used in thrriga
by maximizing the margin that is defined as the sum of tHi@ge Or testing stage. Referring to Section 2, a maximum-
distances of the hyperplane to the closest points of the tgBrOPY analytic signal space partitioning (ASSP) [14] is
classes. If the two classes are non-separable, positiok sigénerated in the radial direction withtz| = 4 segments
variables are introduced to allow some of the training sasip/@nd, in the angular (_1|reqt|on,AW|ttEA| = 1 segment [14];
to fall on the wrong side of the separating hyperplane. THgus, the alphabet size i = [S4] x [Xg| = 4. Thus,
SVM then finds the hyperplane that maximizes the margfR" €ach aim-point, there is a unique partition that is kept
and simultaneously minimizes a quantity directly relaeethe nvariant in both training and testing stages. For consioac
number of classification errors. This procedure, calledft:s@®f PFSA from symbol sequences, a depth bf = 1 is
Margin” method, is an extension of the linear SVM [16]. found to be_ gde_qua_te tp capt_ure_ sufficient information for
Figure 2 depicts the flow chart of the proposed classificati§iAttern classification in this application [8]. Each featuector
algorithm that is constructed based on the theories of sCPt@ined as the (stationary) state probability vector & th
LM, and SVM. Upon collection of acoustic time series datf,_r:SA represents the respective signature of the rifle acoust

symbol sequences are generated by Analytic Signal Spg&nal. The top row of Fig. 4 exhibits a typical time series

Partitioning Partitioning (ASSP) [14] that is invariant footh of acoustic data from Rifle 1 and Rifle 2, which are collected
training and testing stages. In the training stdge,. sets of from the same microphone; examples of feature vectors éor th

rifle-shot time series data with known class labels are tedec WO types of rifles are shown as histograms in the bottom row
of,Fig. 4, which display how the structure of the underlying

A PFSA structure is constructed using SDF; subsequently, o LIS _ ' i
feature vectop’, i € {0, ..., laimn—1} is generated for each Setprobabmty distribution varies with the rifle type.
of the rifle-shot data. The time series data belongs to exactl
one of the two known classe&s; andCs. , )
The feature vectors are inputs to the LM & SVM module —Shock Wave
that generates a hyperplane that maximizes the margin a s *
minimizes classification errors between feature vectorthef
training data. A linear kernel has been used in this paper. |
the testing stage, the feature vectptsi € {0, ..., l;est — 1} B \Mun.e Blast ' Muzzle Blast
are generated from SDF Wlth unknown CIaSS Iabels’ and a _goo 800 900 1000 1100 1200 1300 7%00 800 900 1000 1100 1200 1300
then separated by the hyperplane obtained in the trainaggst Timing Sequence Timing Sequence
The SM & SVM algorithm yields a binary output (i.eC; or
() as the class labels of the testing data.

20

Shock Wave
1 P

Acoustic Sig
Acoustic Signal
o

Probability
Probability

3. RESULTS OFFIELD DATA ANALYSIS

Figure 3 shows a data collection scenario for classificatio 0
of two weapon types, namely, Rifle 1 and Rifle 2 that were C daenmde ° Smeider
fired from two different locations that are 60m apart. Eight (a) Rifle 1 (b) Rifle 2
microphone sensors are distributed over a regior 80m x
30m around each of the three aim-points that are250m
down range. Three plots, arranged as a vertical column in Fig. 5, present
For each of the three aim-points, the data set of Rifle the results of classification for two types of rifles firing rfto

which is generated by firing Rifle 1 from location B, has beelocation A at aim-points 1, 2 and 3, respectively, based en th

Fig. 4. Acoustic signals and respective feature vectors



* Rifle 1 (Day 1)
time series data of Microphone 4. No occurrence of pattern /* o1 Rinetoay2
e . . . . *: ifle

classification errors is observed in these experimentshier t [

specific choice of feature extraction and pattern classifica 0al N{

parameters. For each aim-point, the respective plot in %ig. . ;{,,24
exhibits the results of classification for a single set of &Rifl N It T
2 data and a combination of two different sets of Rifle 1

Hyperplane
data that have been collected on two different days. For each 02 e
aim-point, about a half of the data in each set are used for
training the SVM classifier and the remaining data for tegtin
the classification algorithm. As stated earlier, the partibof
individual data sets for each aim-point is generated based o
the respective data set of Rifle 1 fired from the building as (a) Aim-point 1
indicated by firing location B in Fig. 3. In Fig. 5, the feature

extracted from each data set is represented by a vector that ;R 1ay 1)
belongs to the 4-dimensional real spaké becausdy| = 4 *(. D Rfea
and D = 1. Since the elements of each feature vector are 025 I B e |

stationary probabilities of the four states of a PFSA, the

sum of the (positive) elements of each feature vector isyunit 024 i - R,

Py

(i.e., belonging to the 3-dimensional simplex). Therefardy
three elements of the feature vector are linearly indepsnde
implying that the decision space is 3-dimensional in this
setting. For each of the three plots in Fig. 5, the 2-dimeralio
hyperplane unambiguously separates the patterns of Rifle 2
from those of Rifle 1. In this way, a time series of rifle data
is reliably tested for identification of the unknown rifle gjp
namely, Rifle 1 or Rifle 2 by observing to which side of the

hyperplane the feature vector belongs. * Rifle 1 (Day 1)
The execution time of the algorithm for each plot in 05 ' »1] L Rifet vz
Fig. 5 is less than 1.5 seconds on a desktop computer, which 045 ‘ L
demonstrates its real-time execution capability. 0‘:\
0.3

0.25
0.2

A. Channel Effects on Classification Results

This section presents a summary of channel effects (i.e. 0.159
the degradation of acoustic information due to propagation 01
through the atmosphere) on the classification results, wdrie Py

attributed by: (i) variations in the recorded acoustic aigrue
to relative positions of microphones and calibration ag#i
and (ii) Environmental conditions such as vegetationaiarr
and urban buildings that influence the channel. While thé fifg9: 5 Rifle Classification at aim-points 1, 2, and 3 (Micropa # 4).
cause is mainly a hardware issue that can be mitigated yrroundings include obstacles and reflecting surfacehato t
appropriate calibration, the second cause (i.e., enviemtat the received acoustic signal contains multipath interfeee
effects) is the focus of this section. diffraction effects, and other propagation-related flaws.

In real-world applications (e.g., an urban environmenhwitessence, the environmental effects could be totally differ
tall buildings and various other objects), the shock wavé amat different sensor locations. An ideal weapon classificati
the muzzle blast from sniper firing are subject to reflectiosystem should be independent of the channel effects due to
attenuation, absorption, diffraction, and other wave rficai environmental variations.
tions as they propagate through the atmosphere. A micragphonThe results presented earlier in this section make use
placed in the vicinity of an aim-point receives pressureagavof the acoustic time series data from a single microphone,
arriving directly from the source and waves arriving latenamely, Microphone 4 for weapon classification. This sub-
from other directions due to reflections and scattering. Aection reports the results obtained based on the data from
distances far from the rifle shot trajectory, the shock wawdl 8 microphones, including Microphone 4, to investigdte t
is expected to disperse sufficiently by spatial spreadirai sumpact of environmental effects on the weapon classificatio
that it may no longer be detectable compared to the ambidrite microphones are placed in different locations and have
noise [1]. The situation becomes much more complicateckif tharying levels of echo/reflection due to their slightly difént

(c) Aim-point 3



TABLE |
RIFLE CLASSIFICATION RESULTS OFALL MICROPHONES

Microphone # Aim-point 1 Aim-point 2 Aim-point 3
Microphone 1 95.83% 100.00% 83.33%
Microphone 2 100.00% 100.00% 100.00%
Microphone 3 100.00% 100.00% 95.83%
Microphone 4 100.00% 100.00% 100.00%
Microphone 5 91.67% 100.00% 100.00%
Microphone 6 91.67% 100.00% 100.00%
Microphone 7 91.67% 100.00% 100.00%
Microphone 8 91.67% 91.67% 100.00%
Average 97.22%

environment. Table | summarizes the classification results
obtained from all 8 microphones for each of the 3 aim-points.
The total number of tests (i.e., rifle shots) for each aim-
point is 24, and the classification success rate is calallate
by subtracting the ratio of the number of false classificatio [
over the total test number from 1. It is seen in Table | that

for future research before execution of a field applicatibn o
the proposed weapon classification algorithm:

« Extension of the current algorithm to multi-class pattern

classification with advanced SVM tools.

Enhancement of classification performance through usage
of multi-sensor information fusion.

Investigation of the effects of signal-to-noise ratio
and clutter parameters for automatic target recognition
(ATR) [17]. In this context, while making a trade-off
between probability of false alarms and probability of
successful detection, additional costs related to weapon
localization could be included in the composite cost
functional, which will augment the standard Receiver
Operating Characteristics (ROC) curve to a higher di-
mensional Pareto surface.
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